Newport Water Annual Water Quality Report

Newport Water is pleased to present this water quality report for 2024 to our customers. In accordance with the Safe Drinking Water Act all water utilities are required to issue an annual Consumer Confidence Report to promote customer awareness of the quality of their drinking water. This brochure is a snapshot of the water quality from January 2024 through December 2024. Included are details about where your water comes from, what it contains, and how it compares to EPA standards. In 2024, Newport Water conducted over 50,000 analyses to monitor 76 regulated drinking water contaminants and 87 unregulated drinking water contaminants. The following table indicates only the contaminants that were detected, even if the detected level was below the maximum level set by the EPA. We have also included the unregulated contaminant, chlorate, in the table under Unregulated Contaminant monitoring. Newport Water System has initiated a monitoring program for chlorate in order to be prepared for any EPA regulation or health advisory in the future. Please know that the employees of Newport Water are committed to providing you water that meets all EPA and state drinking water standards.

In anticipation of upcoming revisions to the EPA's Lead and Copper Monitoring Rule, Newport Water completed sampling at all registered schools and child care facilities within our distribution network. Facilities were notified of any detection above five parts per billion and follow up sampling was offered to these locations. Below are the detected ranges of all the samples collected:

Lead (Parts Per Billion)	ND* - 331
Copper (Parts Per Million)	ND* - 4.32

^{*}ND = Not Detected

Public Notice

IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER

Monitoring Requirements Not Met for the City of Newport PWS# RI1592010

Our water system violated a drinking water standard over the 2024 monitoring period. Although this was not an emergency, as our customers, you have the right to know what happened and what we did to correct this situation.

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. Between the dates of 1/1/2024 to 1/31/2024, due to problems in the sample shipping process, we did not correctly monitor for chlorite in the distribution system and therefore cannot be sure of the quality of our drinking water during that time.

What should I do?

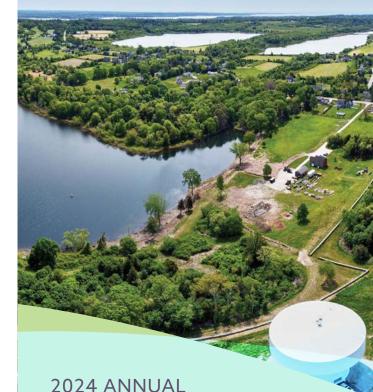
There is nothing you need to do at this time.

The table below lists the contaminant(s) we did not properly test for during the last year, how often we are supposed to sample for the contaminant(s) and how many samples we are supposed to take, how many samples we took, when the samples should have been taken, and the date on which follow-up samples were (or will be) taken.

Contaminant	Required	Number of	When Sample(s)	When
	Sampling	samples	Should have	Sample(s)
	Frequency	Taken	been Taken	will be taken
Chlorite	3 sample-set each month on the same day	2	1/1/2024 – 1/31/2024	Routine samples were taken February 2024

What is being done?

Newport Water Divisions Laboratory reviewed our external contract laboratories policies. Project management staff at the contract laboratory will now immediately notify us if there are any anomalies upon delivery to their facility.


For more information, please contact Robert Schultz at 401-845-5600

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

Dated: May 15, 2025

City of Newport Department of Utilities Water Division

Consumer Confidence Report

City of Newport
Department of Utilities
Water Division
PWS ID RI1592010

About Newport Water

About Newport Water

The original water works in Newport was started in 1876. The Newport Water Works Company was incorporated in 1881, and was succeeded by the Newport Water Corporation in 1929. Since 1936, the City of Newport has owned and operated the system. The Newport Water Division is a division within the City of Newport's Utilities Department and is responsible for the operation and maintenance of the system. Newport Water operates as an enterprise fund and is independent of the overall City budget. Newport Water is licensed by the RI Department of Health as a Public Water Supplier No. 1592010. Newport Water is regulated by the Rhode Island Public Utilities Commission.

Newport's Water Supply

Newport Water draws its raw water supply from a system of nine surface reservoirs: North and South Easton Pond, Paradise Pond, Gardiner Pond, St. Mary's Pond, Sisson Pond, Lawton Valley Reservoir, Nonquit Pond, and Watson Reservoir. These reservoir systems are located in a basin area totaling 18.625 square miles or 11,920 acres of rural,

forested and some developed lands. The reservoirs located in Newport, Middletown, Portsmouth, Tiverton, and Little Compton are interconnected through a complex network of pipelines and pumping stations. Newport Water has purchased 350 acres of conservation easements to protect raw water quality of the reservoirs.

The water is treated at either Station 1 Plant in Newport or the Lawton Valley Plant in Portsmouth. The combined design capacity of the plants is 16 million gallons of treated water per day.

Newport's Distribution System

Newport Water's distribution system consists of water mains of various size, material and age which carry water throughout Newport, Middletown and a portion of Portsmouth to each individual customer. In addition, Newport Water provides water wholesale to the Portsmouth Water and Fire District and the U.S. Navy for distribution within their systems. Newport Water maintains within our system approximately 14,500 services, 170 miles of water main, 3,300 valves and 1,000 hydrants.

Source Water Assessments

In 2003, the University of Rhode Island, in cooperation with

RIDOH and other state and federal agencies, assessed the threats within the watersheds of Newport Water's water supply sources. The assessment found that our water sources on Aquidneck Island and in Little Compton and Tiverton are moderately susceptible to contamination. Monitoring and protection efforts are especially important to assure continued water quality. Newport Water updated the 2003 Assessment in 2010. The complete Source Water Assessment Report is available at our office at 70 Halsey Street.

Cross-Connection Control Plan

Cross-connections between public water supplies and non-potable sources of contamination can represent one of the most significant threats to health in the water supply industry. A cross connection control program protects the public water supply from the possibility of contamination or pollution through backflow or back-siphonage into the public water system from a building's internal plumbing system. The Federal Safe Drinking Water Act requires that the water supplier has the primary responsibility for preventing water from unapproved sources from entering the public potable water system. In March 2010, Newport Water adopted a Cross-Connection Control Plan which is available at www. cityofnewport.com/crossconnectcontrolprogram.

Additional Health Information

To ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health risk and effects can be obtained by calling the EPA's Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and radioactive material and can pick up substances resulting from the presence of animals or human activity. Contaminants that may be present in source water include:

- (A) Microbial contaminants, such as viruses and bacteria, which may come from septic systems, agricultural livestock operations and wildlife.
- (B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm runoff; oil and gas production, mining or farming.
- (C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, storm runoff, and residential uses.
- (D) Organic chemical contaminants, including synthetic and volatile organics, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff and septic systems.
- (E) Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, persons who have HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking

water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Concerning Lead in Our Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Newport Water Division is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap until the water is as cold as it will get before using for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.cityofnewport.com/lead.

2024 DETECTED CONTAMINANTS TABLE

This table shows the results of our combined water-quality analyses for both Station 1 - Newport and Lawton Valley - Portsmouth systems from Jan. 1, through Dec. 31, 2024. Every regulated contaminant that we detected in the water, even in the most minute traces, is listed here along with the highest levels allowed by regulation (MCL), the ideal goals for public health, the amounts detected, the usual sources of such contamination, footnotes explaining our findings and a key to units of measurement.

Microbiological Contaminants

· · · · · · · · · · · · · · · · · · ·								
	Period	Unit	MCL	MCLG	Detected Level	Range	Major Sources	SDWA Violation
Turbidity 1	2024	NTU	TT	n/a	0.66	n/a	Soil runoff	No
Turbidity ¹	2024	lowest monthly % of samples meeting limit	TT	n/a	99.00%	n/a	Soil runoff	No
Total Organic Carbon	2024	removal ratio	TT	n/a	1.26	0.73 - 1.58	Naturally present in environment	No
Inorganic Contaminants								

	Period	Unit	MCL	MCLG	Detected Level	Range	Major Sources	SDWA Violation
Arsenic ⁵	2024	ppb	10	0	0.001	ND - 0.001	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes.	No
Barium 7	2024	ppm	2.0	2.0	0.009	0.006 - 0.009	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits	No
Fluoride ³	2024	ppm	4.0	4.0	2.21	0.01 - 2.21	Water additive which promotes strong teeth	No
Nitrate ⁵	2024	ppm	10	10	1.93	0.07 - 1.93	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits.	No
Increania Contominanto								

Inorganic Contaminants

	Perio	d Unit	MCL	MCLG	Detected Level			SDWA Violation
Сорр	er ² 2022	ppm	AL=1.3	1.3	0.053 ²	0	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.	No
Lead	2022	ppb	AL=15	0	5.3 ²	0	Corrosion of household plumbing systems; erosion of natural deposits.	No

Range

Range

0.33 - 2.20

10 750

29.1 - 63.5

Maior Sources

Major Sources

Water additive used to control microbes

Detected Level

Detected Level

RAA = 1.10

63.5

MCL

MRDI

4.0

n/a

MRDLG

4.0

n/a

Synthetic Organic Contaminants

JIIIaziiie	2024	ppp	4	4	0.20	ND - 0.20	number from herbicide use, runon from manufeaturing sites.	INU
Disinfection By-products								
	Period	Unit	MCL	MCLG	Detected Level	Range	Major Sources	SDWA Violation
Total Trihalomethanes (TTHM) ⁴	2024	ppb	80	n/a	53.4	38.2 - 63.4	By-product of drinking water chlorination	No
Haloacetic Acid 5	2024	ppb	60	n/a	22.5	11.6 - 23.2	By-product of drinking water chlorination	No
Chlorite	2024	maa	1.0	0.800	0.370	<0.010 - 0.410	By-product of drinking water disinfection	No

Disinfectants

Chlorine

Sodium

CHIOTHE DIOXIGE	2024	ppu	000	000	750	10 - 750	water additive used to control inicropes	NO
Unregulated Contaminant	Monitoring							
	Period	Unit	MCL	MCLG	Detected Level	Range	Major Sources	SDWA Violation
Chlorate ⁶	2024	ppb	n/a	n/a	340	22 - 340	By-product of drinking water chlorination	n/a
Manganese 6	2024	ppm	n/a	n/a	0.110	ND - 0.110	Erosion of natural deposits; runoff from orchards.	n/a
Codium	2024	nnm	n/o	n/o	60.5	20.1 62.5	Naturally occurring; road runoff; contained in water treatment chemicals; EPA regulations	n/o

Water Quality Table Footnotes:

¹ 0.66 NTU was the highest single turbidity measurement recorded. The lowest

2024

Period

Period

2024

Unit

ppm

ppm

- monthly percentage of samples meeting the turbidity limit was 99% ² Detected level indicates the 90th percentile value of the 30 samples taken. The Range indicates the number of samples above the action level.
- ³ Newport Water adds fluoride to its treated water as an aid in dental cavity prevention in voung children.
- ⁴ Some people who drink water containing TTHM's in excess of the MCL over many years may experience problems with their liver, kidneys or central nervous system and may have an increased risk of contracting cancer. Detected level is
- Stage 2 DBPR highest locational running annual average.

require us to monitor this contaminant while EPA considers setting a limit on it.

⁵ Sampled and monitored at raw water supply reservoirs prior to treatment.

SDWA Violation

SDWA Violation

No

n/a

- 6 Sampled and monitored at the entry points and distribution system.
- ⁷ Sampled and monitored at the both raw water supply as well as entry points to the distribution system.

2024 SPECIAL PURPOSE MONITORING OF METALS AND SYNTHETIC ORGANICS

As part of Newport Water System's on going monitoring programs, we have continued testing sites for metals and synthetic organic compounds once per quarter for 2024. The sample sites include Station 1 total plant effluent, Lawton Valley Clearwell effluent, and Lawton Valley Tank effluent. This represents the water produced at the both water plants, after treatment, to the distribution system, Eleven metals and thirty-six synthetic organic compounds were analyzed. Below is a summary of the detected results.

Station 1 TPE Metals

	i ciiou	Oilit	WICL	Detected Level	nanye	Major Sources	SDWA VIOIGIIOII
Barium	2024	ppm	2	0.007	0.006 - 0.007	Discharge of drilling wastes; discharge from metal refineries; erosion of natural depo	sits No
Lawton Valley Clearwell Metals							
	Period	Unit	MCL	Detected Level	Range	Major Sources	SDWA Violation
Barium	2024	ppm	2	0.009	0.003 - 0.009	Discharge of drilling wastes; discharge from metal refineries; erosion of natural depo	sits No
Lawton Valley Tank Effluent Meta	nls						
	Period	Unit	MCL	Detected Level	Range	Major Sources	SDWA Violation
Barium	2024	ppm	2	0.009	0.003 - 0.009	Discharge of drilling wastes; discharge from metal refineries; erosion of natural depo	sits No

2023 UCMR 5 Detected Contaminants Table

This table shows the results of our UCMR 5 water-quality analyses for both Station 1 - Newport and Lawton Valley - Portsmouth systems from Jan. 1, through Dec. 31, 2023. These are contaminants that are suspected to be present in drinking water and do not have health-based standards set under the Safe Drinking Water Act

do not nave neami-based	Standards set und	ier the Sale Drillk	ing water act					
UCMR 5 Monitoring	Period	Unit	MCL	MCLG	Detected Level	Range	Major Sources	SDWA Violation
Lithium	2023	ppb	n/a	n/a	ND	ND	Naturally occuring; Erosion of natural deposits.	n/a
PFBS	2023	ppb	n/a	n/a	0.00292	ND - 0.00292		n/a
PFBA	2023	ppb	n/a	n/a	0.00594	ND - 0.00594	Industrial / manufacturing hyproduct Fire training / fire response sites	n/a
PHFxA	2023	ppb	n/a	n/a	0.00506	ND - 0.00506	Industrial / manufacturing byproduct. Fire training / fire response sites.	n/a
PFPeA	2023	daa	n/a	n/a	0.00608	ND - 0.00608		n/a

2024 RIDOH PFAS/PFOA Finished Water Data

The Rhode Island "PFAS in Drinking Water. Groundwater, and Surface Water Act of 2022" required the Newport Water Division to monitor our finished water for PFAS compounds quarterly. Six PFAS/PFOA compounds were specifically targeted by the legistation setting an interim Maximum Contaminant Level (MCL) of 20 Parts Per Trillion (PPT) either individually of combined. Below is a summary of the detections in the finished water from both treatment plants

Finished Water RIDOH Regulated PFAS/PFOA Monitoring

				Detected			
	Period	Unit	MCL	Level	Range	Major Sources	Violation
PFHpA	2024	parts per trillion	20 ppt	2.03	ND - 2.03		NO
PFHxS	2024	parts per trillion	20 ppt	1.37	ND - 1.37		NO
PF0A	2024	parts per trillion	20 ppt	3.05	0.85 - 3.05	_	NO
PFNA	2024	parts per trillion	20 ppt	ND	ND	Industrial / manufacturing	NO
PF0S	2024	parts per trillion	20 ppt	1.43	ND - 1.43	byproduct. Fire training / fire response sites.	NO
PFDA	2024	parts per trillion	20 ppt	ND	ND	Tooponoo oitoo.	NO
TOTAL OF RI SIX PFAS COMPOUNDS	2024	parts per trillion	20 ppt	6.89	0.85 - 6.89		NO

Finished Water Additional PFAS/PFOA Not Currently Regulated By RIDOH

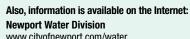
	Period	Unit	MCL	Detected Level	Range	Major Sources	Violation
PFBS	2024	parts per trillion	n/a	2.04	1.85 - 2.04	Industrial / manufacturing	N/A
PFHxA	2024	parts per trillion	n/a	3.74	2.53 - 3.74	byproduct. Fire training / fire response sites.	N/A

2024 PFAS/PF0A Source Water Data

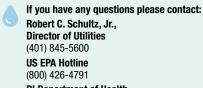
As part of Newport Water Division's ongoing source water monitoring program we continue to sample all of its surface body reserviors for PFAS compounds. Below is a summary of the detections in our source water.

Source Water RIDOH Regulated PFAS/PFOA Monitoring									
	Period	Unit	Detected Level	Range	Major Sources				
PFHpA	2024	parts per trillion	3.08	ND - 3.08					
PFHxS	2024	parts per trillion	2.34	ND - 2.34					
PF0A	2024	parts per trillion	6.01	ND - 6.01					
PFNA	2024	parts per trillion	2.46	ND - 2.46	Industrial / manufacturing byproduct. Fire				
PF0S	2024	parts per trillion	14.6	ND - 14.6	training / fire response sites.				
PFDA	2024	parts per trillion	ND	ND					
TOTAL OF RI SIX PFAS COMPOUNDS	2024	parts per trillion	28.0	ND - 28.0					

Source Water Additional Unregulated PFAS Contaminant Monitoring


	Period	Unit	Detected Level	Range	Major Sources
PFBS	2024	parts per trillion	2.49	2.10 - 2.49	Industrial / manufacturing byproduct. Fire
PFHxA	2024	parts per trillion	4.25	2.70 - 4.25	training / fire response sites.

Abbreviations & Definitions Used in Tables


- MCL Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water MCL's are set as close to the MCLG's as feasible using the best available treatment technology.
- MCLG Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLG's allow for a margin of safety.
- MRDL Maximum Residual Disinfectant Level: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of disinfectant is necessary for control of microbial contaminants
- MRDLG Maximum Residual Disinfectant Level Goal: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLG's do not reflect the benefits of the use of disinfectants to control microbial contamination.
 - AL Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other
 - TT Treatment Technique: A required process intended to reduce the level of a contaminant in drinking
 - NTU Nephelometric Turbidity Units
 - ppm parts per million, or milligrams per liter (mg/l)
 - ppb parts per billion, or micrograms per liter (ug/l)
 - ppt parts per trillion, or nanograms per liter (ng/l)
 - n/a Not applicable
 - ND No Detect

How can you be involved?

Meetings of the Newport City Council begin at 6:30 PM on the second and fourth Wednesday of each month in the Council Chambers, City Hall 43 Broadway, Newport, RI

www.cityofnewport.com/water **Environmental Protection Agency** www.epa.gov/safewater

RI Department of Health, **Drinking Water Quality** (401) 222-6867

The data presented in this report is from the most recent testing done in accordance with regulations. The RI Department of Health (RIDOH) allows Newport Water to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.